

Kaitlyn Triebl Structural Option

Senior Thesis Presentation 2012 The Pennsylvania State University

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS

Kaitlyn Triebl Structural Option

Senior Thesis Presentation 2012 The Pennsylvania State University

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS

♦ BUILDING STATISTICS \diamond Site and Location ♦ STRUCTURAL SYSTEM **SIZE:** 390,000 SF HEIGHT: 80' PROJECT TEAM:

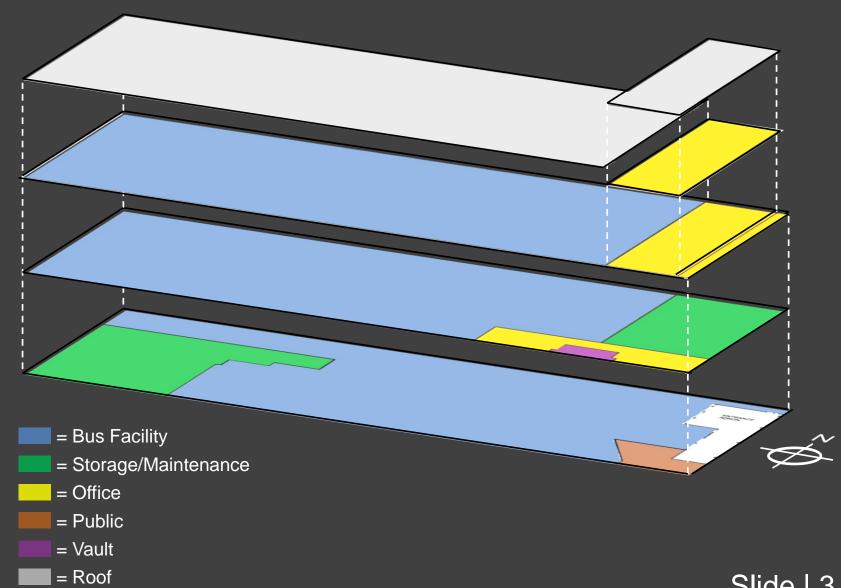
Kaitlyn Triebl

Structural Option

Advisor Kevin Parfitt

BUILDING **S**TATISTICS

FUNCTION: Bus Depot, Service Garage, MTA Offices


- STORIES: 3 (4 in office area)

ENGINEER/ARCHITECT: STV, Incorporated CONSTRUCTION MANAGER: Silverite Construction Co. OWNER/ OCCUPANT: New York City Transit Authority **DATES OF CONSTRUCTION:** Summer 2011 – Summer 2013 **DELIVERY METHOD:** Design Build

New York City Transit

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS

♦ BUILDING STATISTICS ♦ SITE AND LOCATION ♦ STRUCTURAL SYSTEM

EXACT LOCATION: SITE REUSE: SITE ZONING: SURROUNDINGS: SOILS:

Kaitlyn Triebl


Structural Option

Advisor Kevin Parfitt

SITE AND LOCATION

- Undisclosed by Owner
- Former Trolley Barn

- Image: Colton's Topographic Map of the City and County of New York (1835)
- Commercial Heavy Automotive
- Moderate to High Density Residential Districts
- Site Class E Liquefiable Soil

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

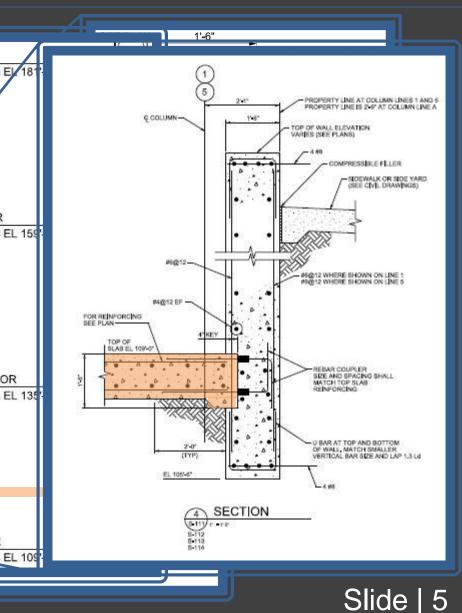
QUESTIONS

♦ BUILDING STATISTICS \diamond Site and Location ♦ STRUCTURAL SYSTEM BASE:

COLUMNS:

Kaitlyn Triebl

Structural Option


Advisor Kevin Parfitt

EXISTING STRUCTURAL SYSTEM

FOUNDATION: Pile Foundation (as deep as I50')

- 14" 18" Reinforced Concrete Slab FLOOR SYSTEM:
 - 6" Reinforced Concrete Slab
 - 2" 18 gage sacrificial metal deck
- Steel Wide Flange WI4x's LATERAL SYSTEM:
 - E-W: Ordinary Steel Braced Frames N-S: Ordinary Steel Moment Frames

ROOF TOP OF SLAB E 44-2" 1 (A320) BROOF THIRD FLOOR TOP OF SLAB EL 15 THIRD FLOOI RAMP LANDING EL. 135.00 SECOND FLOOR RAMP TOP OF SLAB EL 1 EL. 119.50 GAS METER ROOM FIRST FLOOR FIRST FLOOR PICE SLAB EL

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS

♦ PROJECT GOALS

Kaitlyn Triebl

Advisor Kevin Parfitt

Frames

- ♦ Maintain Bus Flow
- ♦ Lower Seismic Reactions
- \diamond Control drift of the 3rd Floor Mezzanine and High Roof
- ♦ Decrease the Construction Time per Frame ♦ Decrease the Cost of Lateral System Erection Our Decrease the Skilled Laborers Necessary on Site

PROJECT GOALS

Replace Moment Frame Scheme with Braced

EXISTING CONDITIONS

PROBLEM STATEMENT

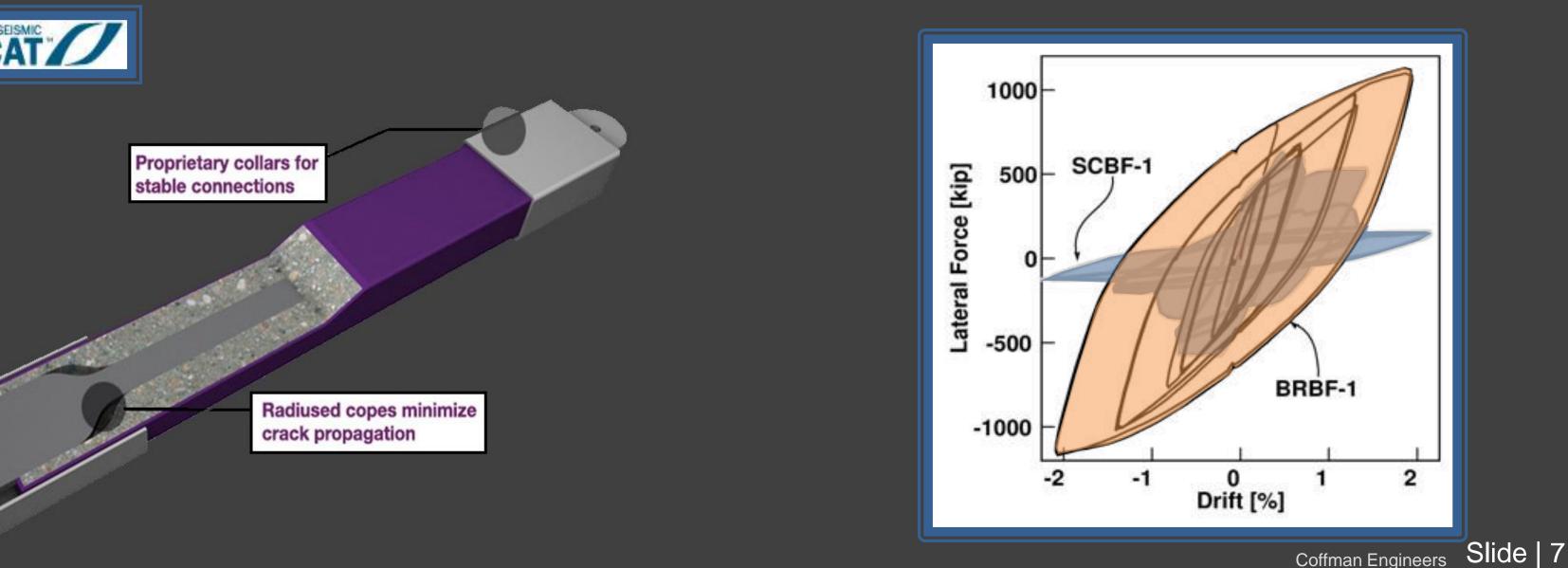
PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS


BUCKLING
 RESTRAINED BRACES
 BRACE RELOCATION

Kaitlyn Triebl

Advisor Kevin Parfitt

BUCKLING **R**ESTRAINED **B**RACED **F**RAMES

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS

BUCKLING **RESTRAINED BRACES** \diamond Brace Relocation

Kaitlyn Triebl

Advisor Kevin Parfitt

BENEFITS OF **B**UCKLING **R**ESTRAINED **B**RACES

♦ Beneficial for Poor Soils

- ♦ Simple Connections
- ♦ Predictable Behavior
- ♦ Yields in Tension and Compression ♦ Fewer Braces than Typical Braced Frame

Images: Nordstrom Topanga Mall (Coffman Engineers)

EXISTING CONDITIONS

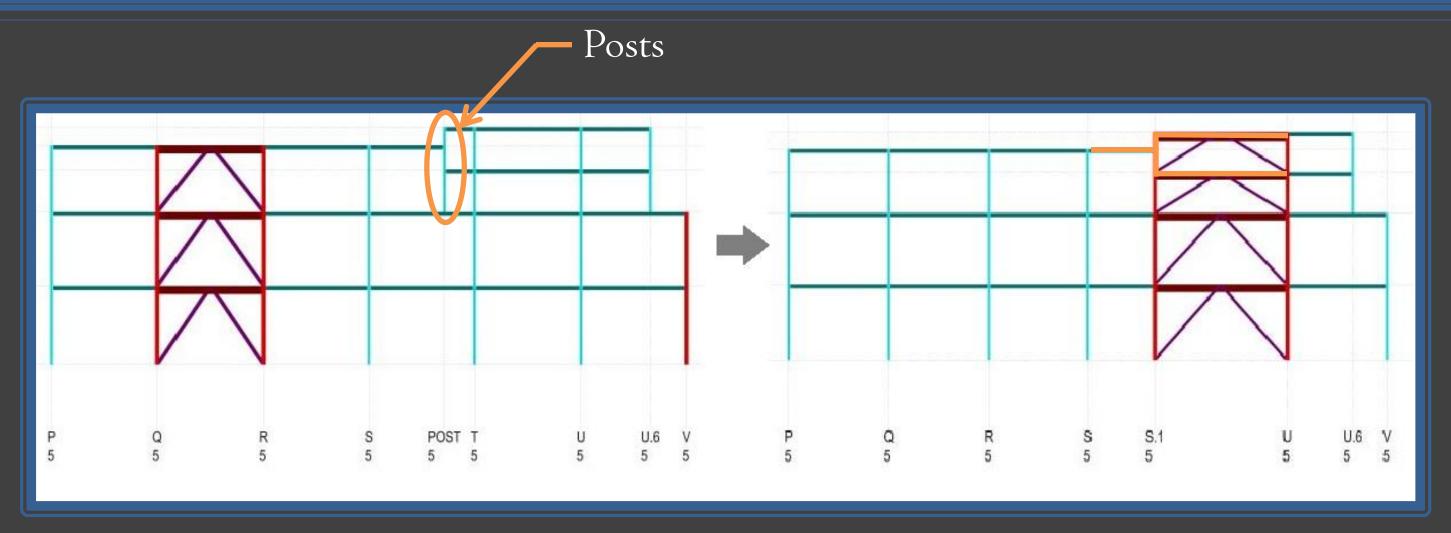
PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS


QUESTIONS

♦ BUCKLING RESTRAINED BRACES ♦ BRACE RELOCATION

Kaitlyn Triebl

Advisor Kevin Parfitt

BRACE **R**ELOCATION

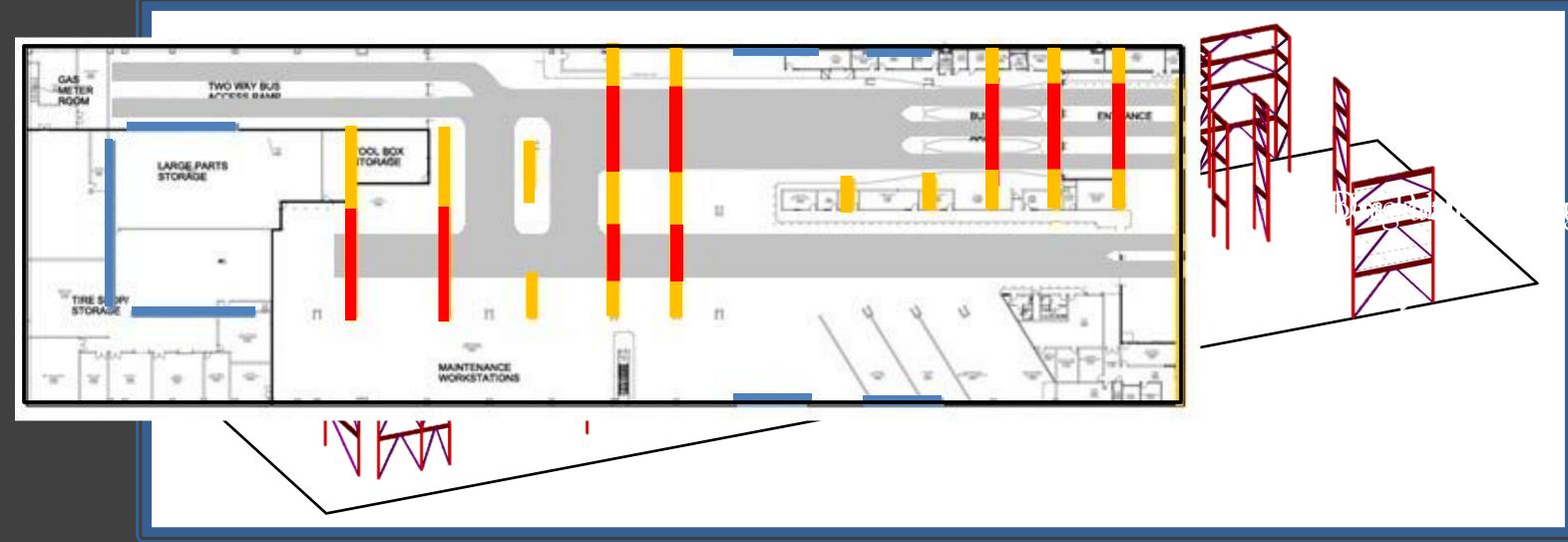
Large Deflections under Original Design

Proposed Design Alteration

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION


STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS

 BAY ELIMINATION
 LATERAL LOADS & DISTRIBUTION
 BRACE DESIGN
 RAM MODELS

Kaitlyn Triebl

Structural Option

Advisor Kevin Parfitt

BAY **E**LIMINATION

ghlBranes

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

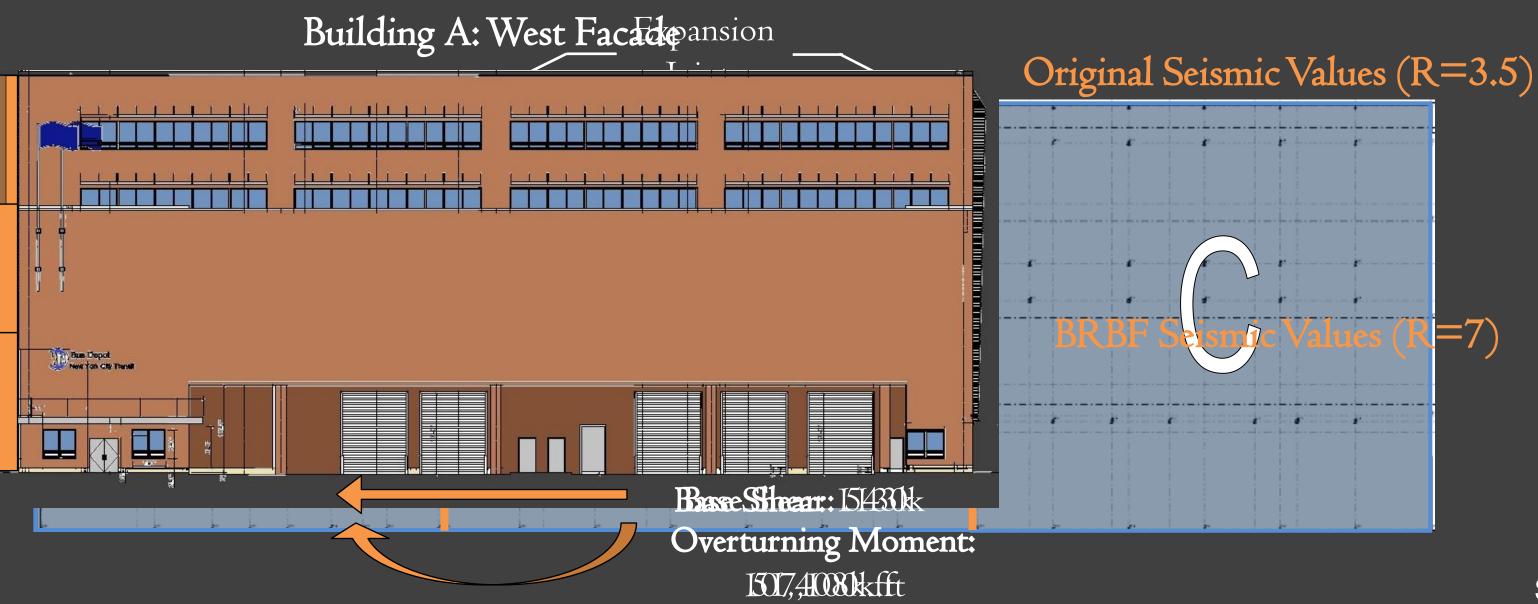
CONCLUSIONS

QUESTIONS

BAY ELIMINATION
 LATERAL LOADS &
 DISTRIBUTION
 BRACE DESIGN
 RAM MODELS

400k

828k


1514330kk

Kaitlyn Triebl

Structural Option

Advisor Kevin Parfitt

LATERAL LOADS AND DISTRIBUTIONS

PROBLEM STATEMENT

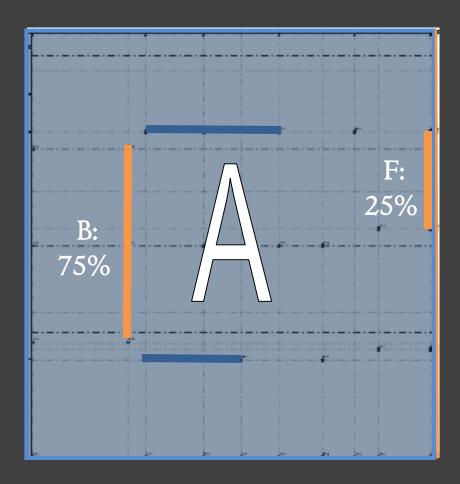
PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

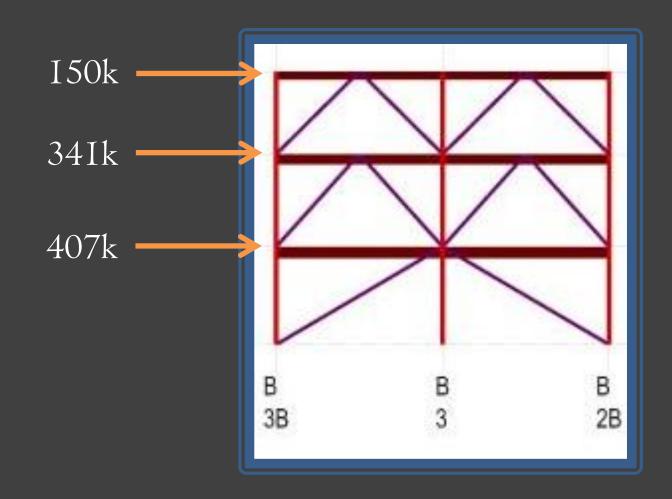
QUESTIONS


♦ BAY ELIMINATION
 ♦ LATERAL LOADS &
 DISTRIBUTION
 ♦ BRACE DESIGN
 ♦ RAM MODELS

Kaitlyn Triebl

Structural Option

Advisor Kevin Parfitt


LATERAL LOADS AND DISTRIBUTIONS

Level I: B: 407 k F: 136 k

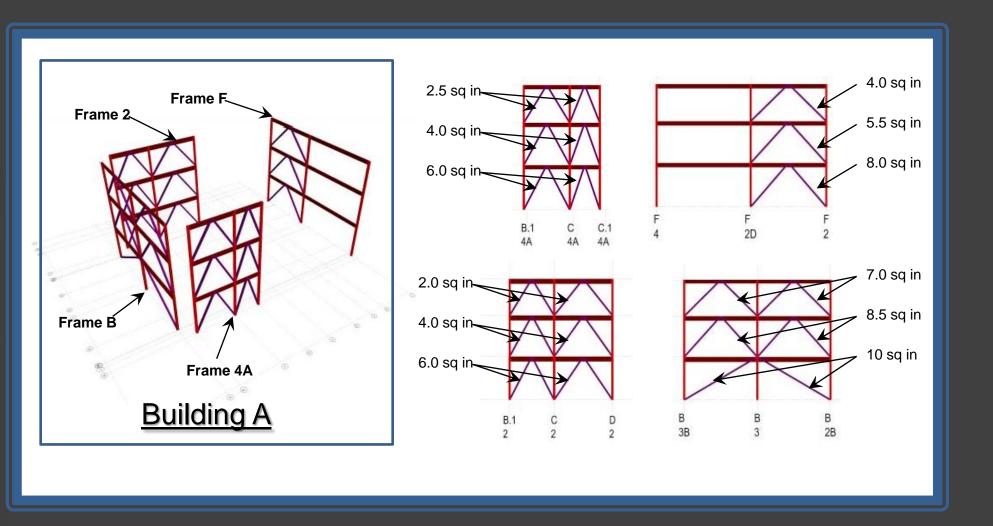
Level 2: B: 341 k F: 114 k

Level 3: B: 150 k F: 50 k

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION


STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS

♦ BAY ELIMINATION
 ♦ LATERAL LOADS & DISTRIBUTION
 ♦ BRACE DESIGN
 ♦ RAM MODELS

Structural Option

Advisor Kevin Parfitt

Brace **D**esign

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

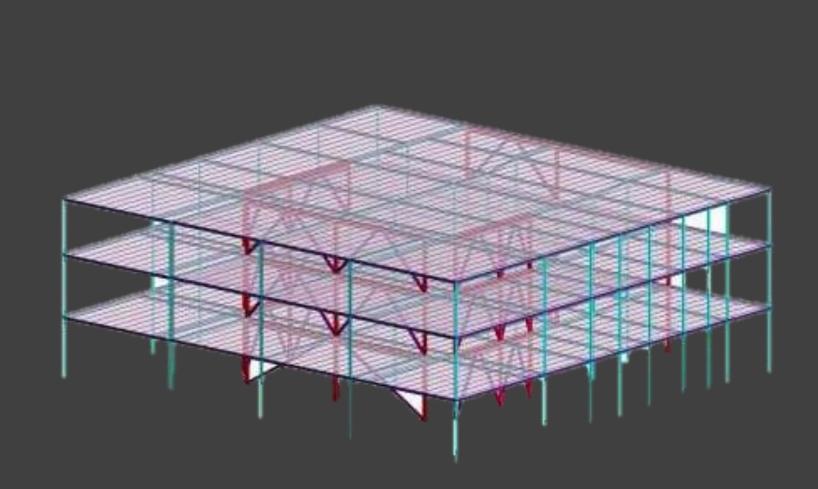
CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS

♦ BAY ELIMINATION ♦ LATERAL LOADS & DISTRIBUTION ♦ BRACE DESIGN ♦ RAM MODELS

Braces


Kaitlyn Triebl

Structural Option

Advisor Kevin Parfitt

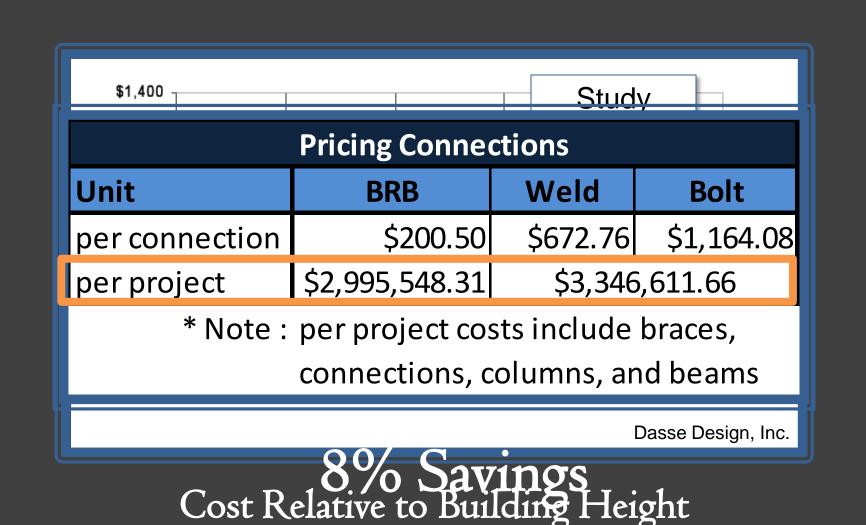
RAM MODELS

- Model Assumptions:
- \diamond All diaphragms rigid
- ♦ All connections pinned (except base) Axial Stiffness Modifier applied to
- Rigid End Offsets applied to Braces
 $\Diamond P \Delta$ Effects Included

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

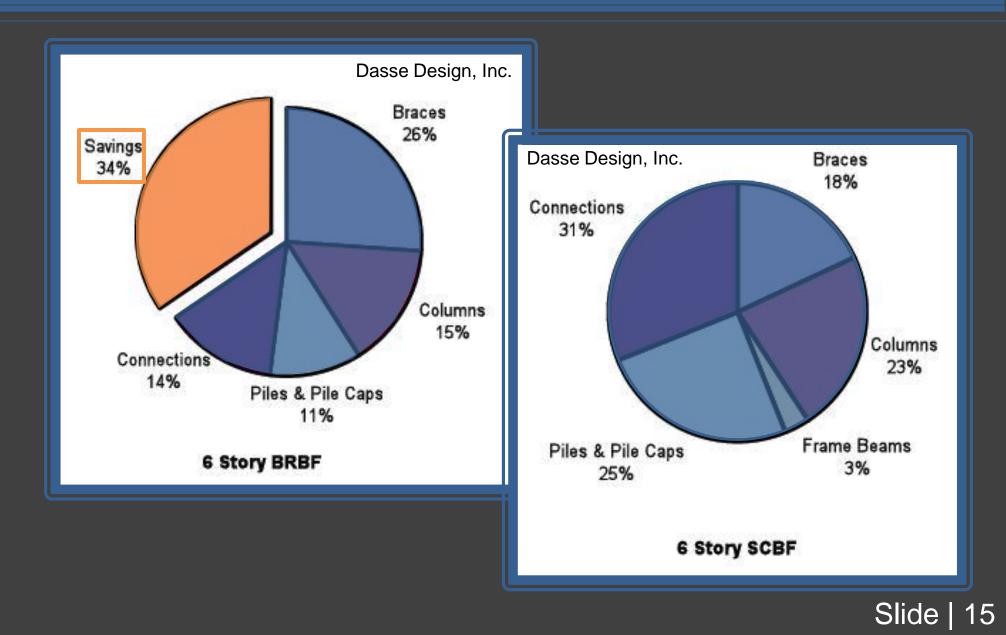

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS

COST ANALYSIS
 SCHEDULE ANALYSIS
 CONSTRUCTION
 SEQUENCE



Kaitlyn Triebl

Structural Option

Advisor Kevin Parfitt

Cost Analysis

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

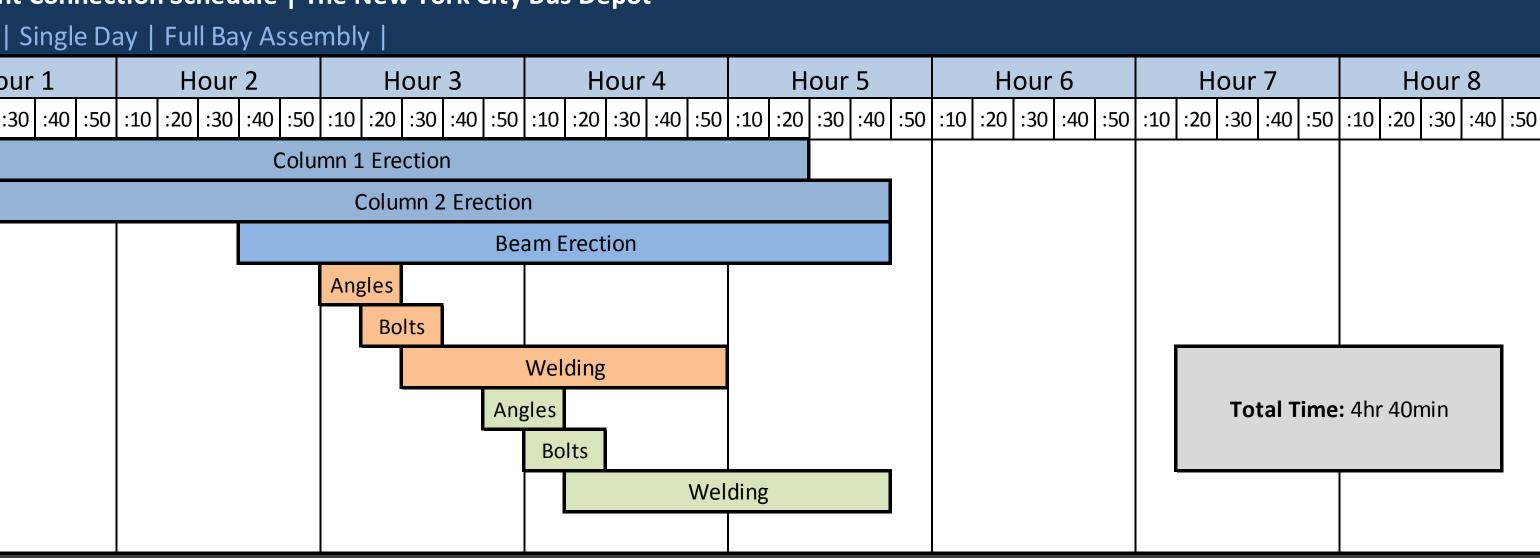
CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS

 \diamond Cost Analysis ♦ SCHEDULE ANALYSIS \diamond CONSTRUCTION SEQUENCE

Kaitlyn Triebl


Structural Option

Advisor Kevin Parfitt

Hour 1

Schedule Analysis

Moment Connection Schedule | The New York City Bus Depot

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

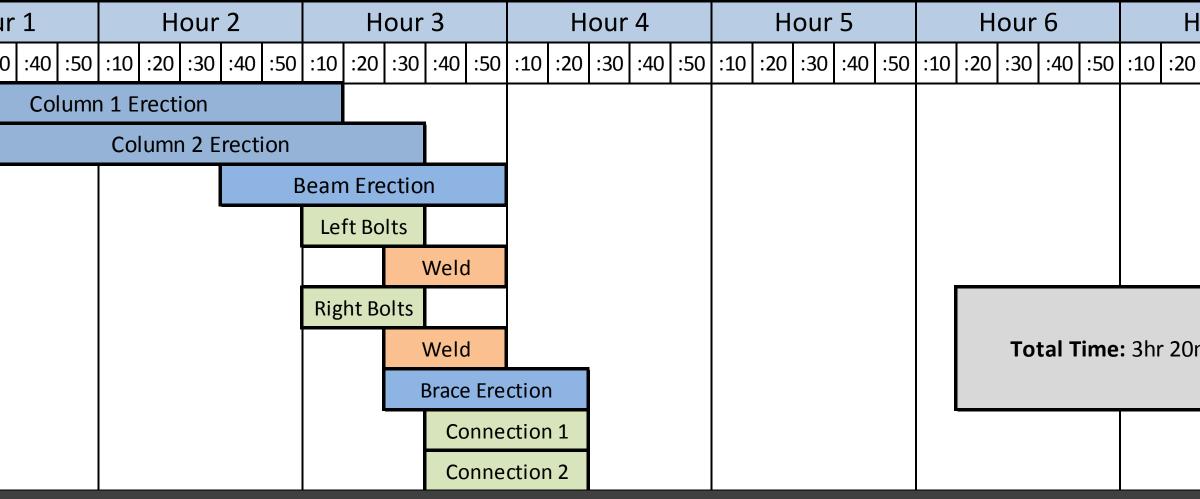
CONCLUSIONS

QUESTIONS

 \diamond Cost Analysis ♦ SCHEDULE ANALYSIS \diamond CONSTRUCTION SEQUENCE

Hour 1

Kaitlyn Triebl


Structural Option

Advisor Kevin Parfitt

Schedule Analysis

Braced Connection Schedule | The New York City Bus Depot

| Single Day | Diagonal Brace Assembly |

-	our	7		Hour 8								
)	:30	:40	:50	:10	:20	:30	:40	:50				
n	nin											
			I									

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS

 \diamond Cost Analysis ♦ SCHEDULE ANALYSIS \diamond Construction SEQUENCE

Ho :10 :20 :3

Advisor Kevin Parfitt

Schedule Analysis

BRB Connection Schedule | The New York City Bus Denot

	nection Schedule The New York City Bus Depot																																		
Single Da	Single Day Diagonal Brace Assembly																																		
our 1	ł	Hour	2			Н	our	3			Н	our	4			Н	our	5			Η	our	6			F	loui	r 7			ł	Но	ur 8		
:30 :40 :50	:10 :20	0 :30	:40	:50	:10	:20	:30	:40	:50	:10	:20	:30	:40	:50	:10	:20	:30	:40	:50	:10	:20	:30	:40	:50	:10	:20	:30	:40	:50) :1	.0 :20) ::	30 :4	0 :5	0
Column	1 Erec	ction														-							-	-		-	-	-	-		-	•			
	Colum	nn 2 Er	ecti	on																															
BRB/Beam Atta	achment	t						-																											
		Bea	am/l	Brac	e Er	ectio	on													_															
				Lef	t Bo	lts		_																											
				Righ	nt Bo	olts		_														То	tal 1	Time	: 2h	r 30	min								
				Bra	ce E	recti	on																												
					Ali	gn		_												_									_						
						Weld	Pins																												
																														-			S	lide	1

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

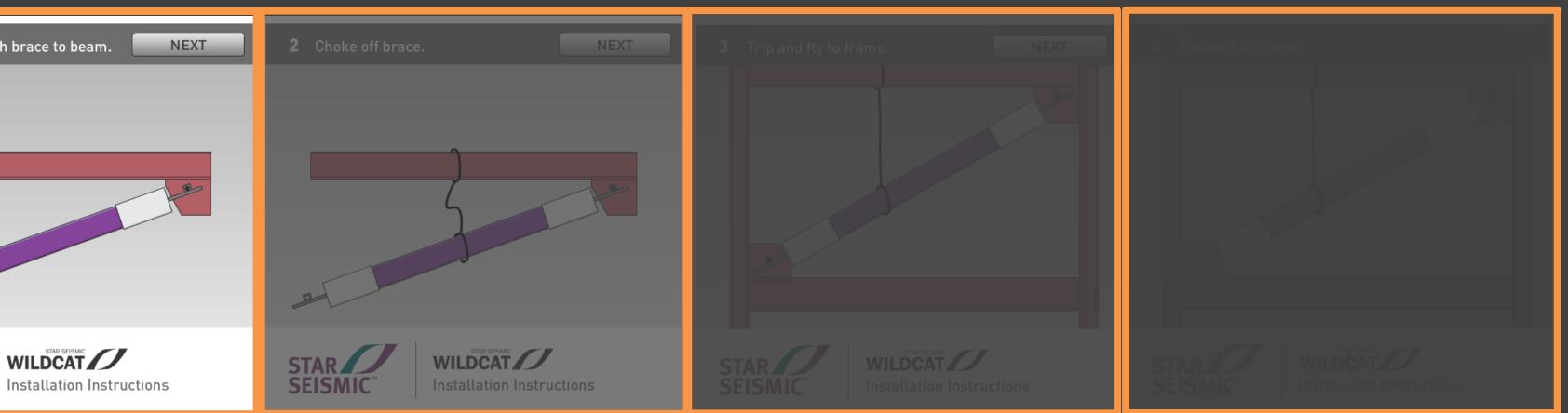
CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS

 \diamond Cost Analysis ♦ SCHEDULE ANALYSIS \diamond Construction SEQUENCE

1 On ground, attach brace to beam.


STAR SEISMIC

Kaitlyn Triebl

Structural Option

Advisor Kevin Parfitt

CONSTRUCTION **S**EQUENCE

Replace Frames

EXISTING CONDITIONS

PROBLEM STATEMENT

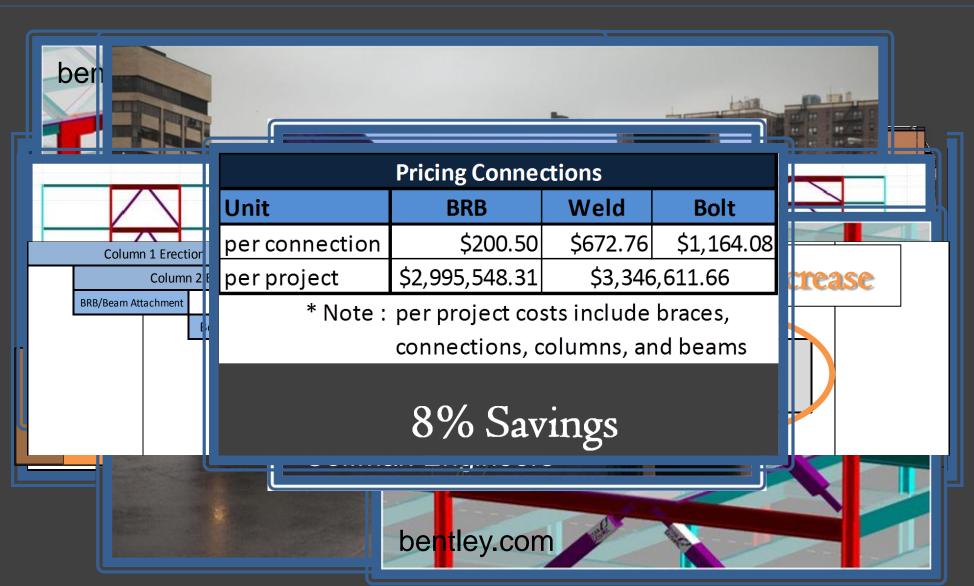
PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS


Kaitlyn Triebl

Advisor Kevin Parfitt

REEVALUATION OF GOALS

♥ Replace Moment Frame Scheme with Braced

- Maintain Bus Flow
- Lower Seismic Reactions
- Control drift of the 3rd Floor Mezzanine and /High Roof
- Decrease the Construction Time per Frame Decrease the Cost of Lateral System Erection Decrease the Skilled Laborers Necessary on Site

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

QUESTIONS

Kaitlyn Triebl

Advisor Kevin Parfitt

Acknowledgments

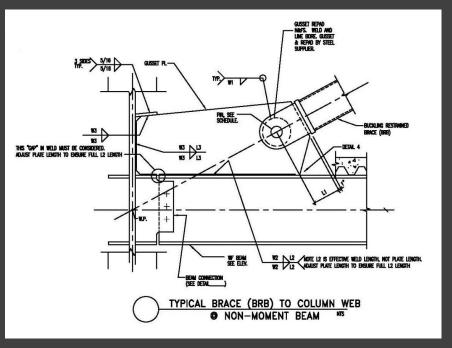
Architectural Engineering Faculty and Staff: Professor Parfitt: Advisor STV Incorporated: A. Christopher Cerino Christopher Papa Robert Weimar Andrew Nolt Star SeismicTM: Kimberly Robinson New York City Mass Transit Authority: Mahesh Patel Friends and Family

EXISTING CONDITIONS

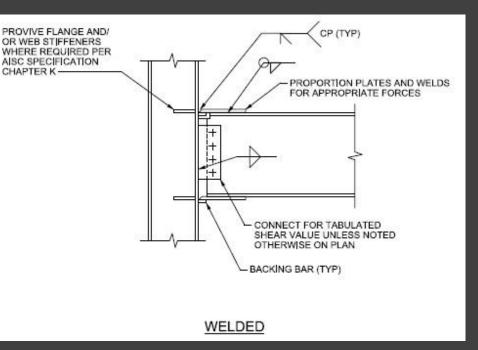
PROBLEM STATEMENT

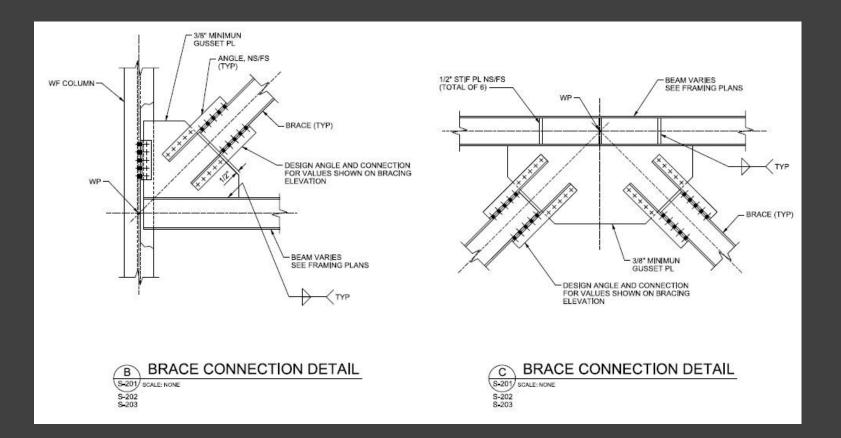
PROPOSED SOLUTION

STRUCTURAL DEPTH


CONSTRUCTION BREADTH

CONCLUSIONS


APPENDICES


Kaitlyn Triebl

Advisor Kevin Parfitt

CONNECTIONS

EXISTING CONDITIONS

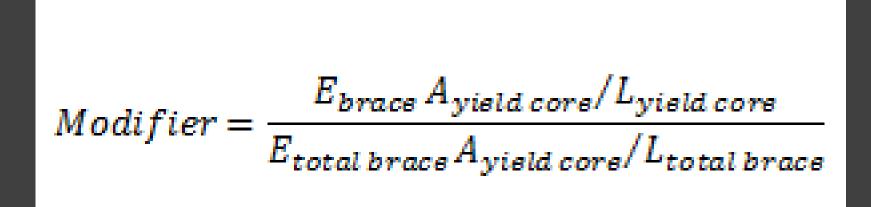
PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS


APPENDICES

Kaitlyn Triebl

Advisor Kevin Parfitt

Connection Strength = $P_{yielding core}^* \beta \omega$ β = Compression Max : Tension Max ω = Tension Max : Yield Strength*Steel Area

AXIAL STIFFNESS MODIFIERS

BUILDING A ECONOMIZATION

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

APPENDICES

Kaitlyn Triebl

Advisor Kevin Parfitt

	F _{ymin} = 39	F _{ymax} = 46	5.00	1
	ksi	ksi	Cd (5, R=	8, 5
NYC	Bus Depot Building A			1111010
	Wildcat [™] Brace Informati	on	Wildca	at B
-				
				12
				10-11
#				<
e t	аше	5	0	Occian A
Brace	a	100	n/n	000
1	184.17ft-128.08ft to F-2D	3-Roof	130.7	4.
2	184.17ft-128.08ft to F-2	3-Roof	121.3	4.
3	184.17ft-128.08ft to F-2D	40942	190.6	5.
4	184.17ft-128.08ft to F-2	40942	183.4	5.
5	184.17ft-128.08ft to F-2D	G-2	252.8	8.
6	184.17ft-128.08ft to F-2	G-2	253.2	8.
7	65.79ft-150.50ft to B.1-2	G-2	198.2	6.
8	65.79ft-150.50ft to C-2	G-2	195.7	6.
9	65.79ft-45.00ft to B.1-4A	3-Roof	77.6	2.
10	65.79ft-45.00ft to C-4A	3-Roof	50.9	2.
11	87.92ft-45.00ft to C-4A	3-Roof	37.5	2.
12	87.92ft-45.00ft to C.1-4A	3-Roof	94.8	2
13	65.79ft-45.00ft to B.1-4A	40942	129.6	4.
14	65.79ft-45.00ft to C-4A	40942	108.8	4.
15	87.92ft-45.00ft to C-4A	40942	88.7	4.
16	87.92ft-45.00ft to C.1-4A	40942	137.5	4.
17	65.79ft-45.00ft to B.1-4A	G-2	193.3	6.
18	65.79ft-45.00ft to C-4A	G-2	193.0	6.
19	87.92ft-45.00ft to C-4A	G-2	174.0	6.
20	87.92ft-45.00ft to C.1-4A	G-2	176.8	6.
21	44.17ft-75.50ft to B-3B	3-Roof	188.3	7.
22	44.17ft-75.50ft to B-3	3-Roof	248.9	7.
23	44.17ft-120.00ft to B-3	3-Roof	244.5	7.
24	44.17ft-120.00ft to B-2B	3-Roof	192.0	7.
25	44.17ft-75.50ft to B-3B	40942	258.9	8.
26	44.17ft-75.50ft to B-3	40942	312.7	8.
27	44.17ft-120.00ft to B-3	40942	308.0	8.
28	44.17ft-120.00ft to B-2B	40942	262.5	8.
29	B-3 to B-3B	G-2	268.6	10
30	B-3 to B-2B	G-2	268.6	10
31	65.79ft-150.50ft to B.1-2	3-Roof	69.3	2.
32	65.79ft-150.50ft to C-2	3-Roof	50.3	2.
33	C.1-2 to C-2	3-Roof	60.3	2.
34	C.1-2 to D-2	3-Roof	64.5	2.
35	65.79ft-150.50ft to B.1-2	40942	135.8	4.
36	65.79ft-150.50ft to C-2	40942	117.0	4.
37	C.1-2 to C-2	40942	130.1	4.
38	C.1-2 to D-2	40942	135.7	4.
39	C.1-2 to C-2	G-2	201.1	6.
40	C.1-2 to D-2	G-2	203.3	6.

Stiffness and Overstrength Factor Analysis 1.41 Use βα Maxima 1.177% 1.35 1.00 1.00 A 10 inside tube straight section 5.5. R=7) A=Area Based .75 No shim+Gap&plates -1 30 Wildcat Brace Stiffness Analysis Wildcat Overstrength Factor Analysis Brace Capacity Analysis Engineering Tools

pproximate brace an connection design

Approximate brac lengths using con design and layou

Calc. brace stiffnes stiffness factors K

Calculate brace ove trength factors o and

lo not exceed tested assemblies

NOTE:

DESIGN ENGINEER PROCES NOTED IN BLUE, BRB MANUFACTURER PROCESS NOTED IN TAN.

Proceed with design documents. **Recommend sending** manufacturer final info for final coordination.

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

APPENDICES

Kaitlyn Triebl

Advisor Kevin Parfitt

	Building A: Frame Torsional Shear													
Level	Frame	V _{tot} (k)	R _i	e _x (ft)	d _i (ft)	$R_i d_i^2$	Torsional Shear (k)							
	В	200.02	0.75	11.18	45.83	1575.29	20.28							
Deef	F	200.02	0.25	11.18	94.12	2214.64	13.88							
Roof	2	215.22	0.61	21.45	41.00	1030.45	42.05							
	4a	215.22	0.39	21.45	66.83	1728.44	43.27							
	В	421.58	0.75	16.42	40.83	1250.32	57.19							
Thind	F	421.58	0.25	16.42	99.12	2456.19	46.28							
Third	2	435.75	0.61	20.78	42.00	1081.33	84.49							
	4a	435.75	0.39	20.78	65.83	1677.10	83.61							
	В	542.56	0.75	20.67	36.83	1017.34	84.28							
Second	F	542.56	0.25	20.67	103.12	2658.43	78.65							
Second	2	542.56	0.61	20.48	42.00	1081.33	103.69							
	4a	542.56	0.39	20.48	65.83	1677.10	102.60							

TORSION: BUILDING A

		Building A	: Mass and	d Rigidity							
Level	Centers o	f Rigidity	Centers	of Mass	Eccentricity(+5%)						
	Xr (ft)	Yr (ft)	Xm (ft)	Ym (ft)	X (ft)	Y (ft)					
Roof	90	110	92	98	11	21					
3rd Floor	85	109	92	98	16	21					
2nd Floor	81	109	92	98	21	20					
						-					
Building B : Mass and Rigidity											
Level	Centers o	f Rigidity	Centers	of Mass	Eccentricity(+5%)						
Levei	Xr (ft)	Yr (ft)	Xm (ft)	Ym (ft)	X (ft)	Y (ft)					
Roof	125	89	123	98	13	19					
3rd Floor	125	95	123	98	13	13					
2nd Floor	125	99	123	98	13	11					
		Building C	: Mass and	d Rigidity							
Level	Centers o	f Rigidity	Centers	of Mass	Eccentricity(+5%)						
LEVEI	Xr (ft)	Yr (ft)	Xm (ft)	Ym (ft)	X (ft)	Y (ft)					
High Roof	124	103	163	100	42	13					
Roof	111	114	65	98	54	25					
3rd Mezz	123	101	164	99	44	12					
3rd Floor	120	99	106	99	25	10					
2nd Floor	121	99	106	98	25	11					

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

APPENDICES

Kaitlyn Triebl

Advisor Kevin Parfitt

BRBF Seismic (VB= COW Cs=

BASE SHEAR (R=7, not 3.5 as for moment frames)

 $= \frac{|S_{DS}/(R/I)|}{|S_{DI}/[T_{o}R/I]|} = 0.14/[(.806)(7/1)]| = 0.024 \text{ CONTROLS (0150 >.01)}$ min $|S_{DI}T_{L}/[T_{o}R/I]| = 0.14(6)((.806^{2})(7/1))| = 0.18$

EXISTING CONDITIONS

PROBLEM STATEMENT

PROPOSED SOLUTION

STRUCTURAL DEPTH

CONSTRUCTION BREADTH

CONCLUSIONS

APPENDICES

Kaitlyn Triebl

Structural Option

Advisor Kevin Parfitt

SEISMIC

Structure	Load	Max (in)	Permitted (in)	Ratio
	EQ	0.50053	3.634	0.14
A	W	0.20579	2.180	0.09
в	EQ	1.45441	3.634	0.40
В	W	0.62195	2.180	0.29
c	EQ	4.53502	3.934	1.15
L.	W	0.86859	2.557	0.34

Structure	Load	Max (in)	Permitted (in)	Ratio
Δ	EQ	1.28	3.634	0.35
A	W	0.312	2.180	0.14
D	EQ	0.520	3.634	0.14
В	W	0.315	2.180	0.14
C	EQ	0.724	3.934	0.18
L	W	0.386	2.557	0.15

 $\frac{H}{400}$ (Wind per Code)

0.020h_{sx} (Seismic per Code)

 $\frac{H}{240}$ (Seismic for Nonstructural)